
On Wacker’s Essential Equation in the
Extrapolation Measurement Technique

Alex J. Yuffa
National Institute of Standards and Technology

Boulder, CO 80305, USA
alex.yuffa@nist.gov

Abstract—The generalized three-antenna method is a standard
method for measuring on-axis gain and polarization of an
antenna without a priori knowledge. The cornerstone of the
method is the use of the extrapolation technique and the key
relationship in the extrapolation technique is Wacker’s equation.
This equation expresses the received signal as a function of the
separation distance between any two antennas. The derivation of
Wacker’s equation is not readily available in the literature. In this
paper, we provide a streamlined derivation of Wacker’s equation
and address some of the common misconceptions associated with
it.

I. INTRODUCTION

The extrapolation technique is commonly used to measure
on-axis gain and polarization of an antenna. This technique
was introduced almost five decades ago by Newell, Baird, and
Wacker in their seminal paper [1]. The technique is based on
an equation that represents the received signal as a function
of the separation distance between any two antennas. This
equation, see equation (26) in [1], is equally accurate when
the antennas are close together or far apart because it accounts
for the multiple scattering effects between the two antennas. In
the seminal paper, the derivation of the equation is attributed
to an unpublished technical report by Wacker. Two years
before the seminal paper was published Newell and Kerns
[2] attributed the derivation of the equation to another of
Wacker’s unpublished works with an almost identical title.
A decade later Kerns, in his classic monograph [3, p. 148],
attributes the derivation of the equation to the unpublished
report by Wacker. Furthermore, Kerns cites private commu-
nication with Yaghjian (presumably Arthur D. Yaghjian) and
states that Yaghjian derived an almost identical equation to
Wacker’s (26) in [1] via a different method [3, p.148]. At
this point the referencing of unpublished literature ends and
Kerns gives a brute-force derivation of the equation under a
greatly simplifying assumption of no multiple scattering [3,
pp. 147–159]. It is not clear why the authors cited the report
as unpublished as it was published almost a year before the
seminal paper was submitted for publication [4]. The front
page of the report is shown in Fig. 1 and may be obtain
from the National Oceanic and Atmospheric Administration
(NOAA) library in Boulder, Colorado.
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Fig. 1. (Color online) The cover of the allusive Wacker’s report [4] is shown.

Perhaps because of the perceived lack of availability of
Wacker’s report, we have encountered a number of practi-
tioners with a misleading interpretation of Wacker’s equation.
One misconception is that the distance between the two
antennas should be measured from the phase centers of the
antennas. Another misconception is that Wacker’s equation
only approximately accounts for the multiple scattering effects.
This misconception seems to be caused by the input reflection
coefficient of the probe antenna in free space. To eliminate
some of these misconceptions, we present an abridged deriva-
tion of Wacker’s equation with the aim of pedagogical clarity.

II. ORDERS-OF-SCATTERING INTERPRETATION

Consider two on-axis antennas separated by free space as
shown in Fig. 2. Without lost of generality, we let the antenna
under test (AUT) be the antenna on the left-hand side (LHS)
in Fig. 2 and the probe antenna to be on the right-hand side
(RHS). The scattering-matrix for each antenna is defined by[

bα1
bα2

]
=

[
Sα11 Sα12
Sα21 Sα22

] [
aα1
aα2

]
, (1a)

where α = ` for the LHS antenna and α = r for the RHS
antenna. We can also define a scattering-matrix for the space



Fig. 2. Two on-axis antennas separated by free space are shown. The
terminal surfaces are represented by the labeled dashed lines. The complex
amplitudes of the incident and emergent modes are denoted by a`1, a

r
2 and

b`1, b
r
2, respectively.

between the antennas via[
ar1
a`2

]
=

[
0 Sr`

12

Sr`
21 0

] [
br1
b`2

]
, (1b)

where the diagonal elements vanish because there is no
coupling between the incident and emergent waves at the r1
terminal surface and the `2 terminal surface. The scattering-
matrix for the whole system is defined by[

b`1
br2

]
=

[
S11 S12

S21 S22

] [
a`1
ar2

]
(2)

and can be expressed in terms of S`, Sr`, Sr by eliminating
a`2, b

`
2 and ar1, b

r
1 from (1) and comparing the result to (2) to

obtain

S11 = S`11 + S`12R
r
[
1− S`22Rr

]−1
S`21, (3a)

S12 = S`12S
r`
21

[
1− Sr

11R
`
]−1

Sr
12, (3b)

S21 = Sr
21S

r`
12

[
1− S`22Rr

]−1
S`21, (3c)

S22 = Sr
22 + Sr

21R
`
[
1− Sr

11R
`
]−1

Sr
12, (3d)

where

Rr = Sr`
21S

r
11S

r`
12 and R` = Sr`

12S
`
22S

r`
21 (4)

In (4), Rr (R`) is the reflection coefficient of the RHS (LHS)
antenna as seen by the LHS (RHS) antenna.

By the nth orders-of-scattering approximation we mean
an expansion of (3) in “powers” of Rr or R` up to and
including order n [5]. It is important to realize that although
we have treated the elements of the scattering-matrices as
scalar numerical entities they are not. In general, the elements
of the scattering-matrices are integral operators, and thus (2)
contains not algebraic equations but rather integral equations
in disguise. Therefore, the operators in the square brackets in
(3) should be expanded in the Neumann series [6, §3.2],

[1−G]
−1

= 1 +G+GG+ · · · =
∞∑
n=0

Gn, ||G|| < 1, (5)

rather than the Taylor series. In other words, the Gn term in (5)
should be interpreted as the nth iterated kernel and 1 should
be interpreted as the identity operator.

To gain some physical insight into (5) let’s consider the 2nd
orders-of-scattering approximation of S21 and S22. In other

Fig. 3. (Color online) The 2nd orders-of-scattering approximation of S(2)
21 is

schematically illustrated.

Fig. 4. (Color online) The 2nd orders-of-scattering approximation of S(2)
22 is

schematically illustrated.

words, expanding the square bracket terms in S21 and S22 in
the Neumann series yields

S
(2)
21 = Sr

21S
r`
12S

`
21 + Sr

21S
r`
12

(
S`22R

r
)
S`21

+ Sr
21S

r`
12

(
S`22R

r
)2
S`21, (6a)

and

S
(2)
22 = Sr

22 + Sr
21R

`Sr
12 + Sr

21R
`
(
Sr
11R

`
)
Sr
12, (6b)

where the superscript (2) denotes the order of the approxi-
mation. In Fig. 3, the first, second, and third terms on the
RHS of (6a) are schematically shown by the solid, dashed,
and dotted lines, respectively. From Fig. 3, we see that the
first term corresponds to the direct transmission of a`1 and the
second term includes the reflections of the signal by the probe
and the AUT. A similar interpretation may be constructed for
(6b), see Fig. 4. It is important to note that the first term on
the RHS of (6b) corresponds to the direct reflection of ar2 by
the RHS antenna (probe) as seen from its feed. In other words,
this is the reflection coefficient that one would measure in the
absence of the LHS antenna (AUT).

III. WACKER’S EQUATION

In the previous section, we provided a physical insight into
the mutual coupling between the two antennas. This was done
in a general and abstract manner by formal manipulation of
the scattering-matrices. In this section, we will remove the



abstraction layer by constructing an explicit form of the S-
matrix.

If we assume the probe antenna is connected to a load with
the reflection coefficient Γr, then ar2 = Γrbr2 and from (2) we
have

br2 = [1− S22Γr]
−1
S21a

`
1. (7)

Notice that the square bracket on the RHS of (7) contains the
integral operator S22 and not the reflection coefficient of the
probe Sr

22.

A. Zeroth Order-of-Scattering

To obtain the zeroth order-of-scattering approximation of
(7) we substitute the first term on the RHS of (6) into (7) to
obtain

b
r(0)
2 = [1− Sr

22Γr]
−1
Sr
21S

r`
12S

`
21a

`
1. (8)

In (8), the term inside the square bracket is a complex scalar
quantity, and thus we only need to determine the explicit form
of

T ≡ Sr
21S

r`
12S

`
21a

`
1. (9)

The key to obtaining the explicit form of T is to recognize
that it may be written as [4, pp.12–13]

T =

∞∫
−∞

∞∫
−∞

a`1f1(kx)f2(ky)f3(kz)
e+ikzd

kz
dkxdky, (10a)

where f1, f2, and f3 are entire functions and wave vector k =
kxêx` + kyêy` + kzêz` is such that

kz =

{
+
√
k2 − κ2 for κ < k

+i
√
κ2 − k2 for κ > k

, (10b)

with κ2 = k2x+k2y , see Fig. 2. Recall that for an entire function
the principal part of the Laurent series vanishes [7, p.17], and
thus we have

f1 =

∞∑
m=0

Axmk
m
x , f2 =

∞∑
n=0

Aynk
n
y , f3 =

∞∑
p=0

Azpk
p
z . (11)

Substituting (11) into (10a), and noting that the odd powers
of kx and ky integrate to zero, we obtain

T = a`1
∑
mnp

AxmA
y
nA

z
p

×
∞∫
−∞

∞∫
−∞

k2mx k2ny kpz
e+ikzd

kz
dkxdky, (12)

where the triple sum is over all non-negative integers. Con-
verting the double integral in (12) to polar coordinates via
kx = κ cos θ and ky = κ sin θ, then using the orthogonal
property of cosines and sines yields

T = a`1

∞∑
n=0

∞∑
p=0

AxnA
y
nA

z
p

∫ ∞
0

κ4nkpz
e+ikzd

kz
κdκ. (13)

Changing the integration variable in (13) from κ to kz by
recalling that κ2 is a function of k2z , see (10b), yields

T = −a`1
∞∑
n=0

∞∑
p=0

AxnA
y
nA

z
p

×
∫ i∞

k

(
k2 − k2z

)2n
kpze+ikzd dkz. (14)

If we parameterize the line integral in the complex kz-plane
in (14) via kz = k + it, then the product of the two infinite
sums in (14) can be written as

∞∑
n=0

∞∑
p=0

AxnA
y
nA

z
p

(
k2 − k2z

)2n
kpz =

∞∑
q=0

Bqt
q, (15)

where the unknown Bq coefficients depend on the Axn, A
y
n, A

z
p

coefficients and the wavenumber k. Substituting (15) into (14)
and changing the integration variable from kz to t yields

T = −ia`1

∞∑
q=0

Bqe
+ikd

∫ ∞
0

tqe−td dt. (16)

Recognizing the integral in (16) as the Laplace transform of
tq [8, §17.13] we immediately obtain

T = a`1
e+ikd

kd

∞∑
n=0

An
(kd)n

, (17)

where the unknown An coefficients depend on the Bq coeffi-
cients. The form of (17) is not surprising because according to
the Wilcox expansion theorem [9] any electromagnetic wave
produced by a finite charge distribution has an expansion of
the form

e+ikr

kr

∞∑
n=0

An(θ, φ)

(kr)n
, r > rc, (18)

where (r, θ, φ) are the usual spherical coordinates and rc is
the radius of the smallest circumscribing sphere containing the
finite charge distribution. Finally, after substituting (17) into
(8) we obtain the zeroth order-of-scattering approximation of
the signal measured by the probe; namely,

b
r(0)
2 = a`1 [1− Sr

22Γr]
−1 e+ikd

kd

∞∑
n=0

An
(kd)n

. (19)

From the derivation of (17) we see that the An coefficients
in (19) are independent of Sr

22 and Γr. This observation is
obvious in the current context but it will become camouflaged
when we consider all orders-of-scattering.

B. All Orders-of-Scattering

The first orders-of-scattering approximation of S21 includes
the first two terms on the RHS of (6a); namely, the zeroth
order-of-scattering, which we computed in Section III-A, and
the Sr

21S
r`
12

(
S`22R

r
)
S`21 term. Similar to the computation

of the zeroth order-of-scattering approximation, the key to



obtaining the explicit form of T = Sr
21S

r`
12

(
S`22R

r
)
S`21a

`
1 is

to recognize that it may be written as [4, p.24]

T = a`1

∞∫∫
−∞

dkxdky

∞∫∫
−∞

dk′xdk′y

∞∫∫
−∞

dk′′xdk′′y

f(kx, ky, k
′
x, k
′
y, k
′′
x , k
′′
y )

ei(kz+k
′
z+k

′′
z )d

kz + k′z + k′′z
, (20)

where the function f is an entire function in each variable. The
integrals in (20) may be evaluated following the procedure of
Section III-A to obtain

T = a`1
e3ikd

(kd)3

∞∑
n=0

A′n
(kd)n

. (21)

In general, we can use the above method for all orders-of-
scattering. Therefore, we can obtain exact explicit forms of
S21 and S22. These forms are given by [4, pp.25–27],

S21 =
eikd

kd

∞∑
m=0

∞∑
n=0

e2mikd

(kd)2m
Amn
(kd)n

. (22a)

and

S22 =

∞∑
m=0

∞∑
n=0

e2mikd

(kd)2m
Bmn
(kd)n

, (22b)

where B0n = Sr
22δ0n and δ0n is the Kronecker delta function.

In (22b), B0n = Sr
22δ0n because (22b) must agree with the

zeroth order-of-scattering approximation, i.e., S(0)
22 = Sr

22.
To obtain Wacker’s equation, we use the Neumann series to

expand the square bracket term in (7) and then substitute (22)
into the resultant, i.e.,

br2
a`1

=
eikd

kd

×
∞∑
p=0

[
Γr
∑
mn

e2mikd

(kd)2m
Bmn
(kd)n

]p ∑
m′n′

e2m
′ikd

(kd)2m′

Am′n′

(kd)n′ (23)

Wacker’s equation (23) may be written in a more traditional
form by multiplying out the sums in (23) to obtain

br2
a`1

=
eikd

kd

∞∑
m=0

∞∑
n=0

e2mikd

(kd)2m
Cmn
(kd)n

, (24)

where, in general, the Cmn coefficients depend on the
Amn, Bmn coefficients and Γr. We can simplify (24) further
by noting that for m = 0 it must agree with the zeroth order-
of-scattering approximation given by (19); thus, we have

br2
a`1

=
1

1− Sr
22Γr

eikd

kd

∞∑
m=0

∞∑
n=0

e2mikd

(kd)2m
Fmn
(kd)n

, (25)

where F00 and only F00 is independent of Sr
22 and Γr (see

the end of Section III-A).

IV. DISCUSSION

Wacker’s equation is given by (25) and it accounts for all
multiple scattering effects between the two antennas. Unfor-
tunately, it can also be improperly derived leading to miscon-
ceptions. To see this, substitute the exact form of S21 given
by (22a) into the zeroth order-of-scattering approximation (8)
to obtain

1

1− Sr
22Γr

eikd

kd

∞∑
m=0

∞∑
n=0

e2mikd

(kd)2m
Amn
(kd)n

. (26)

This improper derivation suggests that Wacker’s equation ac-
counts for the multiple scattering effects contained in S22 only
to the zeroth order-of-scattering. Of course, this conclusion is
incorrect as we have shown in Section III-B.

Another source of confusion comes from the separation
distance variable d. In general, d should be measured from
behind the face of the AUT to behind the face of the probe
as shown in Fig. 2. With this choice, the sums in (25) will
usually converge for any d as long as the two antennas are
not touching [4, pp.15–22]. A sufficient, but not necessary,
condition for the sums in (25) to converge is given by

d > rAUT + rprobe, (27)

where rAUT (rprobe) is the radius of the smallest circumscribing
sphere containing the AUT (probe) [3, Ch. III, §5]. It is
important to note that if the sums in (25) converge, then the
on-axis gain and polarization of the antenna are not affected
by the choice of origin of the separation distance. To see this,
we shift the coordinate system by d0 so that the new separation
distance is given by

d′ = d− d0 (28)

and substitute (28) into (25) to obtain

br2
a`1

=
1

1− Sr
22Γr

∞∑
m=0

∞∑
n=0

e(2m+1)ikd′

(kd′)2m+1+n

Fmne(2m+1)ikd0

(1 + ε)2m+n+1
,

(29)
where ε = d0/d

′. Then, expanding 1/(1 + ε)2m+n+1 in the
binomial series and relabeling the expansion coefficients yields

br2
a`1

=
1

1− Sr
22Γr

eikd
′

kd′

∞∑
m=0

∞∑
n=0

e2mikd′

(kd′)2m
F ′mn

(kd′)n
, (30)

where F ′00 = eikd0F00. In the far field, the gain and polariza-
tion are independent of the F ′mn,m > 0, n > 0 coefficients.
Thus, if we tactfully assume that the different polarization
states of the antenna are measured in the same coordinate
system, then from F ′00 = eikd0F00 we see that the gain and
polarization of the antenna are unchanged by an absolute phase
shift [1, p.427]. In other words, only the relative phase between
the different polarization states is of consequence.

V. CONCLUSIONS

In this paper, we provided orders-of-scattering interpretation
of the scattering-matrix for a two antenna system. We obtained
the orders-of-scattering interpretation by first expressing the
scattering-matrix of the system in terms of its individual



components before formally expanding it in the Neumann
series, see Section II. Using the series representation of the
scattering-matrix we obtained the explicit forms of its elements
and derived Wacker’s equation. We showed that Wacker’s
equation is exact and discussed its convergence properties.
Furthermore, we also discussed from where the separation
distance between the two antennas should be measured and
showed that the choice of the origin does not affect the gain
and the polarization of the antenna.
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